Some Code Template Just for Fun.
View the Project on GitHub Yuri3-xr/CP-library
#include "Number_Theory/Gauss-Integer.hpp"
#pragma once #include "../Template/Template.hpp" #include "Factorization.hpp" namespace Format_Fact { using i128 = __int128; struct G { i128 a, b; G(){}; G(i128 a, i128 b) : a(a), b(b){}; G friend operator+(const G &a, const G &b) { return {a.a + b.a, a.b + b.b}; } G friend operator-(const G &a, const G &b) { return {a.a - b.a, a.b - b.b}; } G friend operator*(const G &a, const G &b) { return {a.a * b.a - a.b * b.b, a.a * b.b + a.b * b.a}; } bool operator==(const G &x) const { return x.a == a && x.b == b; } inline G operator*(const i128 &t) const { return {a * t, b * t}; } inline G operator/(const i128 &t) const { return {a / t, b / t}; } G friend operator/(const G &a, const G &b) { i128 len = b.a * b.a + b.b * b.b; G c = a * G(b.a, -b.b); auto div = [&](i128 a, i128 n) -> i128 { i128 now = (a % n + n) % n; return ((a - now) / n); }; return {div(2 * c.a + len, 2 * len), div(2 * c.b + len, 2 * len)}; } G power(i128 b) { G res(1, 0); G a = *this; for (; b; b /= 2, a = a * a) { if (b % 2) { res = res * a; } } return res; } }; G solveprime(i128 p) { if (p == 2) return {1, 1}; i128 t = 1; auto qpow = [](i128 a, i128 b, i128 p) { i128 res = 1; while (b) { if (b & 1) res = res * a % p; a = a * a % p; b = b / 2; } return res; }; for (; qpow(t, (p - 1) / 2, p) != p - 1;) t++; i128 k = qpow(t, (p - 1) / 4, p); auto gcd = [&](auto &&self, G a, G b) -> G { if (b.a == 0 && b.b == 0) return a; else return self(self, b, a - (a / b) * b); }; auto g = gcd(gcd, {p, 0}, {k, 1}); if (g.a < 0) g.a = -g.a; if (g.b < 0) g.b = -g.b; if (g.a > g.b) std::swap(g.a, g.b); return g; } std::vector<G> solvecomposite(i128 n) { auto prm = Factor::factorSortedList<i128>(n); std::vector<G> v{{1, 0}}; for (const auto &[p, tmp] : prm) { if (p % 4 == 1) { G A = solveprime(p); G B = {A.a, -A.b}; auto now = A.power(2 * tmp); std::vector<G> res; for (i64 i = 0; i <= 2 * tmp; i++) { for (auto it : v) res.push_back(it * now); now = now * B / A; } swap(v, res); } else { G now(p, 0); now = now.power(tmp); for (auto &&it : v) it = it * now; } } for (auto &&[a, b] : v) { if (a < 0) a = -a; if (b < 0) b = -b; } std::sort(v.begin(), v.end(), [&](const G &a, const G &b) { return std::make_pair(a.a, a.b) < std::make_pair(b.a, b.b); }); v.resize(unique(v.begin(), v.end()) - v.begin()); std::vector<G> t; for (const auto &[a, b] : v) if (a != 0 && b != 0) t.emplace_back(a, b); return t; } } // namespace Format_Fact
#line 2 "Number_Theory/Gauss-Integer.hpp" #line 2 "Template/Template.hpp" #include <bits/stdc++.h> using i64 = std::int64_t; #line 2 "Number_Theory/Factorization.hpp" #line 2 "Number_Theory/Binary-Gcd.hpp" #line 4 "Number_Theory/Binary-Gcd.hpp" inline i64 binary_gcd(i64 a, i64 b) { if (a == 0 || b == 0) return a + b; char n = __builtin_ctzll(a); char m = __builtin_ctzll(b); a >>= n; b >>= m; n = std::min(n, m); while (a != b) { i64 d = a - b; char s = __builtin_ctzll(d); bool f = a > b; b = f ? b : a; a = (f ? d : -d) >> s; } return a << n; } #line 5 "Number_Theory/Factorization.hpp" namespace Factor { using u64 = std::uint64_t; u64 modmul(u64 a, u64 b, u64 M) { i64 ret = a * b - M * u64(1.L / M * a * b); return ret + M * (ret < 0) - M * (ret >= (i64)M); } u64 modpow(u64 b, u64 e, u64 mod) { u64 ans = 1; for (; e; b = modmul(b, b, mod), e /= 2) if (e & 1) ans = modmul(ans, b, mod); return ans; } bool isPrime(u64 n) { if (n < 2 || n % 6 % 4 != 1) return (n | 1) == 3; std::vector<u64> A = {2, 325, 9375, 28178, 450775, 9780504, 1795265022}; u64 s = __builtin_ctzll(n - 1), d = n >> s; for (u64 a : A) { // ^ count trailing zeroes u64 p = modpow(a % n, d, n), i = s; while (p != 1 && p != n - 1 && a % n && i--) p = modmul(p, p, n); if (p != n - 1 && i != s) return 0; } return 1; } u64 pollard(u64 n) { auto f = [n](u64 x, u64 k) { return modmul(x, x, n) + k; }; u64 x = 0, y = 0, t = 30, prd = 2, i = 1, q; while (t++ % 40 || binary_gcd(prd, n) == 1) { if (x == y) x = ++i, y = f(x, i); if ((q = modmul(prd, std::max(x, y) - std::min(x, y), n))) prd = q; x = f(x, i), y = f(f(y, i), i); } return std::gcd(prd, n); } std::vector<u64> factor(u64 n) { if (n == 1) return {}; if (isPrime(n)) return {n}; u64 x = pollard(n); auto l = factor(x), r = factor(n / x); l.insert(l.end(), r.begin(), r.end()); return l; } template <class T = u64> std::vector<std::pair<T, int>> factorSortedList(u64 n) { // \prid x_i^p_i auto fac = factor(n); std::sort(fac.begin(), fac.end()); std::vector<std::pair<T, int>> lt; for (int i = 0, j; i < int(fac.size()); i = j) { j = i; while (j < static_cast<int>(fac.size()) && fac[i] == fac[j]) j++; lt.emplace_back(fac[i], j - i); } return lt; } } // namespace Factor #line 5 "Number_Theory/Gauss-Integer.hpp" namespace Format_Fact { using i128 = __int128; struct G { i128 a, b; G(){}; G(i128 a, i128 b) : a(a), b(b){}; G friend operator+(const G &a, const G &b) { return {a.a + b.a, a.b + b.b}; } G friend operator-(const G &a, const G &b) { return {a.a - b.a, a.b - b.b}; } G friend operator*(const G &a, const G &b) { return {a.a * b.a - a.b * b.b, a.a * b.b + a.b * b.a}; } bool operator==(const G &x) const { return x.a == a && x.b == b; } inline G operator*(const i128 &t) const { return {a * t, b * t}; } inline G operator/(const i128 &t) const { return {a / t, b / t}; } G friend operator/(const G &a, const G &b) { i128 len = b.a * b.a + b.b * b.b; G c = a * G(b.a, -b.b); auto div = [&](i128 a, i128 n) -> i128 { i128 now = (a % n + n) % n; return ((a - now) / n); }; return {div(2 * c.a + len, 2 * len), div(2 * c.b + len, 2 * len)}; } G power(i128 b) { G res(1, 0); G a = *this; for (; b; b /= 2, a = a * a) { if (b % 2) { res = res * a; } } return res; } }; G solveprime(i128 p) { if (p == 2) return {1, 1}; i128 t = 1; auto qpow = [](i128 a, i128 b, i128 p) { i128 res = 1; while (b) { if (b & 1) res = res * a % p; a = a * a % p; b = b / 2; } return res; }; for (; qpow(t, (p - 1) / 2, p) != p - 1;) t++; i128 k = qpow(t, (p - 1) / 4, p); auto gcd = [&](auto &&self, G a, G b) -> G { if (b.a == 0 && b.b == 0) return a; else return self(self, b, a - (a / b) * b); }; auto g = gcd(gcd, {p, 0}, {k, 1}); if (g.a < 0) g.a = -g.a; if (g.b < 0) g.b = -g.b; if (g.a > g.b) std::swap(g.a, g.b); return g; } std::vector<G> solvecomposite(i128 n) { auto prm = Factor::factorSortedList<i128>(n); std::vector<G> v{{1, 0}}; for (const auto &[p, tmp] : prm) { if (p % 4 == 1) { G A = solveprime(p); G B = {A.a, -A.b}; auto now = A.power(2 * tmp); std::vector<G> res; for (i64 i = 0; i <= 2 * tmp; i++) { for (auto it : v) res.push_back(it * now); now = now * B / A; } swap(v, res); } else { G now(p, 0); now = now.power(tmp); for (auto &&it : v) it = it * now; } } for (auto &&[a, b] : v) { if (a < 0) a = -a; if (b < 0) b = -b; } std::sort(v.begin(), v.end(), [&](const G &a, const G &b) { return std::make_pair(a.a, a.b) < std::make_pair(b.a, b.b); }); v.resize(unique(v.begin(), v.end()) - v.begin()); std::vector<G> t; for (const auto &[a, b] : v) if (a != 0 && b != 0) t.emplace_back(a, b); return t; } } // namespace Format_Fact