Some Code Template Just for Fun.
View the Project on GitHub Yuri3-xr/CP-library
#include "Polynomial/LinearlyRecurrent.hpp"
#pragma once #include "CoeffofRationalFunction.hpp" template <class Z> Z LinearlyRecurrent(const Poly<Z> &a, Poly<Z> c, i64 k) { /* a_n=\sum_{d=1^t} c_d * a_{n-d} give a_0,a_1,...,a_{t-1} c_1,c_2,...,c_t[but store at cp[0,...,t-1]] solev a_k TC: O(t\logt\logk) */ assert(a.size() == c.size()); c = Poly<Z>{1} - c.mulxk(1); return CoeffofRationalFunction<Z>((a * c).modxk(a.size()), c, k); }
#line 2 "Polynomial/LinearlyRecurrent.hpp" #line 2 "Polynomial/CoeffofRationalFunction.hpp" #line 2 "Template/Template.hpp" #include <bits/stdc++.h> using i64 = std::int64_t; #line 2 "Polynomial/Poly.hpp" #line 2 "Polynomial/Ntt.hpp" #line 1 "Template/Power.hpp" template <class T> T power(T a, int b) { T res = 1; for (; b; b /= 2, a *= a) { if (b % 2) { res *= a; } } return res; } #line 5 "Polynomial/Ntt.hpp" template <class Z> struct NTT { std::vector<int> rev; std::vector<Z> roots{0, 1}; static constexpr int getRoot() { auto _mod = Z::get_mod(); using u64 = uint64_t; u64 ds[32] = {}; int idx = 0; u64 m = _mod - 1; for (u64 i = 2; i * i <= m; ++i) { if (m % i == 0) { ds[idx++] = i; while (m % i == 0) m /= i; } } if (m != 1) ds[idx++] = m; int _pr = 2; for (;;) { int flg = 1; for (int i = 0; i < idx; ++i) { u64 a = _pr, b = (_mod - 1) / ds[i], r = 1; for (; b; a = a * a % _mod, b /= 2) { if (b % 2 == 1) r = r * a % _mod; } if (r == 1) { flg = 0; break; } } if (flg == 1) break; ++_pr; } return _pr; }; static constexpr int rt = getRoot(); void dft(std::vector<Z> &a) { int n = a.size(); if (int(rev.size()) != n) { int k = __builtin_ctz(n) - 1; rev.resize(n); for (int i = 0; i < n; i++) { rev[i] = rev[i >> 1] >> 1 | (i & 1) << k; } } for (int i = 0; i < n; i++) { if (rev[i] < i) { std::swap(a[i], a[rev[i]]); } } if (int(roots.size()) < n) { int k = __builtin_ctz(roots.size()); roots.resize(n); while ((1 << k) < n) { Z e = power(Z(rt), (Z::get_mod() - 1) >> (k + 1)); for (int i = 1 << (k - 1); i < (1 << k); i++) { roots[2 * i] = roots[i]; roots[2 * i + 1] = roots[i] * e; } k++; } } for (int k = 1; k < n; k *= 2) { for (int i = 0; i < n; i += 2 * k) { for (int j = 0; j < k; j++) { Z u = a[i + j]; Z v = a[i + j + k] * roots[k + j]; a[i + j] = u + v; a[i + j + k] = u - v; } } } } void idft(std::vector<Z> &a) { int n = a.size(); reverse(a.begin() + 1, a.end()); dft(a); Z inv = (1 - Z::get_mod()) / n; for (int i = 0; i < n; i++) { a[i] *= inv; } } std::vector<Z> multiply(std::vector<Z> a, std::vector<Z> b) { int sz = 1, tot = a.size() + b.size() - 1; if (tot <= 20) { std::vector<Z> ret(tot); for (size_t i = 0; i < a.size(); i++) for (size_t j = 0; j < b.size(); j++) ret[i + j] += a[i] * b[j]; return ret; } while (sz < tot) { sz *= 2; } a.resize(sz), b.resize(sz); dft(a), dft(b); for (int i = 0; i < sz; ++i) { a[i] = a[i] * b[i]; } idft(a); a.resize(tot); return a; } }; #line 4 "Polynomial/Poly.hpp" template <class Z> struct Poly { std::vector<Z> a; Poly() {} Poly(int sz, Z val) { a.assign(sz, val); } Poly(const std::vector<Z> &a) : a(a) {} Poly(const std::initializer_list<Z> &a) : a(a) {} int size() const { return a.size(); } void resize(int n) { a.resize(n); } Z operator[](int idx) const { if (idx < size()) { return a[idx]; } else { return 0; } } Z &operator[](int idx) { return a[idx]; } Poly mulxk(int k) const { auto b = a; b.insert(b.begin(), k, 0); return Poly(b); } Poly modxk(int k) const { k = std::min(k, size()); return Poly(std::vector<Z>(a.begin(), a.begin() + k)); } Poly divxk(int k) const { if (size() <= k) { return Poly(); } return Poly(std::vector<Z>(a.begin() + k, a.end())); } friend Poly operator+(const Poly &a, const Poly &b) { std::vector<Z> res(std::max(a.size(), b.size())); for (int i = 0; i < int(res.size()); i++) { res[i] = a[i] + b[i]; } return Poly(res); } friend Poly operator-(const Poly &a, const Poly &b) { std::vector<Z> res(std::max(a.size(), b.size())); for (int i = 0; i < int(res.size()); i++) { res[i] = a[i] - b[i]; } return Poly(res); } friend Poly operator*(Poly a, Poly b) { if (a.size() == 0 || b.size() == 0) { return Poly(); } static NTT<Z> ntt; return ntt.multiply(a.a, b.a); } friend Poly operator*(Z a, Poly b) { for (int i = 0; i < int(b.size()); i++) { b[i] *= a; } return b; } friend Poly operator*(Poly a, Z b) { for (int i = 0; i < int(a.size()); i++) { a[i] *= b; } return a; } Poly &operator+=(Poly b) { return (*this) = (*this) + b; } Poly &operator-=(Poly b) { return (*this) = (*this) - b; } Poly &operator*=(Poly b) { return (*this) = (*this) * b; } Poly operator/(const Poly &r) const { return Poly(this->a) /= r; } Poly rev(int deg = -1) const { Poly ret(this->a); if (deg != -1) ret.a.resize(deg, Z(0)); reverse(begin(ret.a), end(ret.a)); return ret; } Poly &operator/=(const Poly &r) { if (this->size() < r.size()) { this->a.clear(); return *this; } int n = this->size() - r.size() + 1; return *this = (rev().modxk(n) * r.rev().inv(n)).modxk(n).rev(n); } Poly deriv() const { if (a.empty()) { return Poly(); } std::vector<Z> res(size() - 1); for (int i = 0; i < size() - 1; ++i) { res[i] = Z(i + 1) * a[i + 1]; } return Poly(res); } Poly integr() const { std::vector<Z> res(size() + 1); for (int i = 0; i < size(); ++i) { res[i + 1] = a[i] / (i + 1); } return Poly(res); } Poly inv(int m) const { Poly x{a[0].inverse()}; int k = 1; while (k < m) { k *= 2; x = (x * (Poly{2} - modxk(k) * x)).modxk(k); } return x.modxk(m); } Poly log(int m) const { return (deriv() * inv(m)).integr().modxk(m); } Poly exp(int m) const { Poly x{1}; int k = 1; while (k < m) { k *= 2; x = (x * (Poly{1} - x.log(k) + modxk(k))).modxk(k); } return x.modxk(m); } Poly pow(int k, int m) const { int i = 0; while (i < size() && a[i].get() == 0) { i++; } if (i == size() || 1LL * i * k >= m) { return Poly(std::vector<Z>(m)); } Z v = a[i]; auto f = divxk(i) * v.inverse(); return (f.log(m - i * k) * k).exp(m - i * k).mulxk(i * k) * power(v, k); } Poly sqrt(int m) const { Poly x{1}; int k = 1; while (k < m) { k *= 2; x = (x + (modxk(k) * x.inv(k)).modxk(k)) * ((Z::get_mod() + 1) / 2); } return x.modxk(m); } Poly mulT(Poly b) const { if (b.size() == 0) { return Poly(); } int n = b.size(); reverse(b.a.begin(), b.a.end()); return ((*this) * b).divxk(n - 1); } std::vector<Z> eval(std::vector<Z> x) const { if (size() == 0) { return std::vector<Z>(x.size(), 0); } const int n = std::max(int(x.size()), size()); std::vector<Poly> q(4 * n); std::vector<Z> ans(x.size()); x.resize(n); std::function<void(int, int, int)> build = [&](int p, int l, int r) { if (r - l == 1) { q[p] = Poly{1, -x[l]}; } else { int m = (l + r) / 2; build(2 * p, l, m); build(2 * p + 1, m, r); q[p] = q[2 * p] * q[2 * p + 1]; } }; build(1, 0, n); std::function<void(int, int, int, const Poly &)> work = [&](int p, int l, int r, const Poly &num) { if (r - l == 1) { if (l < int(ans.size())) { ans[l] = num[0]; } } else { int m = (l + r) / 2; work(2 * p, l, m, num.mulT(q[2 * p + 1]).modxk(m - l)); work(2 * p + 1, m, r, num.mulT(q[2 * p]).modxk(r - m)); } }; work(1, 0, n, mulT(q[1].inv(n))); return ans; } Poly inter(const Poly &y) const { std::vector<Poly> Q(a.size() * 4), P(a.size() * 4); std::function<void(int, int, int)> build = [&](int p, int l, int r) { int m = (l + r) >> 1; if (l == r) { Q[p] = Poly{-a[m], Z(1)}; } else { build(p * 2, l, m); build(p * 2 + 1, m + 1, r); Q[p] = Q[p * 2] * Q[p * 2 + 1]; } }; build(1, 0, a.size() - 1); Poly f; f.a.resize((int)(Q[1].size()) - 1); for (int i = 0; i + 1 < Q[1].size(); i += 1) f[i] = (Q[1][i + 1] * (i + 1)); Poly g = f.eval(a); std::function<void(int, int, int)> work = [&](int p, int l, int r) { int m = (l + r) >> 1; if (l == r) { P[p].a.push_back(y[m] * power(g[m], Z::get_mod() - 2)); return; } work(p * 2, l, m); work(p * 2 + 1, m + 1, r); P[p].a.resize(r - l + 1); Poly A = P[p * 2] * Q[p * 2 + 1]; Poly B = P[p * 2 + 1] * Q[p * 2]; for (int i = 0; i <= r - l; i++) P[p][i] = (A[i] + B[i]); }; work(1, 0, a.size() - 1); return P[1]; } Poly shift(Z t, int m = -1) { /* input: y(0) , y(1) , ... , y(n-1) output: y(t) , t(t+1) , ... ,y (t+m-1) ## m = -1 => m = n */ if (m == -1) m = this->size(); i64 T = t.get(); int k = (int)(this->size()) - 1; T %= Z::get_mod(); if (T <= k) { Poly ret(m, 0); int ptr = 0; for (i64 i = T; i <= k && ptr < m; i++) ret[ptr++] = a[i]; if (k + 1 < T + m) { auto suf = shift(k + 1, m - ptr); for (int i = k + 1; i < T + m; i++) ret[ptr++] = suf[i - (k + 1)]; } return ret; } if (T + m > Z::get_mod()) { auto pref = shift(T, Z::get_mod() - T); auto suf = shift(0, m - pref.size()); copy(begin(suf.a), end(suf.a), back_inserter(pref.a)); return pref; } Poly finv(k + 1, 1), d(k + 1, 0); for (int i = 2; i <= k; i++) finv[k] *= i; finv[k] = Z(1) / finv[k]; for (int i = k; i >= 1; i--) finv[i - 1] = finv[i] * i; for (int i = 0; i <= k; i++) { d[i] = finv[i] * finv[k - i] * a[i]; if ((k - i) & 1) d[i] = -d[i]; } Poly h(m + k, 0); for (int i = 0; i < m + k; i++) { h[i] = Z(1) / (T - k + i); } auto dh = d * h; Poly ret(m, 0); Z cur = T; for (int i = 1; i <= k; i++) cur *= T - i; for (int i = 0; i < m; i++) { ret[i] = cur * dh[k + i]; cur *= T + i + 1; cur *= h[i]; } return ret; } }; #line 5 "Polynomial/CoeffofRationalFunction.hpp" template <class Z> Z CoeffofRationalFunction(Poly<Z> P, Poly<Z> Q, i64 k) { Z ret = 0; if (P.size() >= Q.size()) { auto R = P / Q; P -= R * Q; while (P.size() && P.a.back() == Z(0)) P.a.pop_back(); if (k < int(R.size())) ret += R[k]; } if (P.a.empty()) return ret; P.a.resize(int(Q.size()) - 1); while (k > 0) { Poly<Z> Q2(Q.a); for (int i = 1; i < int(Q2.size()); i += 2) Q2[i] = -Q2[i]; auto sub = [&](const Poly<Z> &as, bool odd) { Poly<Z> bs((as.size() + !odd) / 2, 0); for (int i = odd; i < (int)as.size(); i += 2) bs[i >> 1] = as[i]; return bs; }; P = sub(P * Q2, k & 1); Q = sub(Q * Q2, 0); k /= 2; } return ret + P[0]; } #line 4 "Polynomial/LinearlyRecurrent.hpp" template <class Z> Z LinearlyRecurrent(const Poly<Z> &a, Poly<Z> c, i64 k) { /* a_n=\sum_{d=1^t} c_d * a_{n-d} give a_0,a_1,...,a_{t-1} c_1,c_2,...,c_t[but store at cp[0,...,t-1]] solev a_k TC: O(t\logt\logk) */ assert(a.size() == c.size()); c = Poly<Z>{1} - c.mulxk(1); return CoeffofRationalFunction<Z>((a * c).modxk(a.size()), c, k); }